Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Climate change is increasingly impacting water availability. National-scale hydrologic models simulate streamflow resulting from many important processes, but often without processes such as human water use and management activities. This work explores and tests methods to account for such omitted processes using one national-scale hydrologic model. Two bias correction methods, Flow Duration Curve (FDC) and Auto-Regressive Integrated Moving Average (ARIMA), are tested on streamflow simulated by the US Geological Survey National Hydrologic Model (NHM-PRMS), which omits irrigation pumping. A semi-arid agricultural case study is used. FDC and ARIMA perform better for correcting low and high flows, respectively. A hybrid method performs well at both low and high flows; typical Nash-Sutcliffe values increased from <-1.00 to about 0.75. Results suggest methods with which national-scale hydrologic models can be bias-corrected for omitted processes to improve regional streamflow estimates. Utility of these correction methods in simulation of future projections is discussed.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            White, Timothy; Provenzale, Antonello (Ed.)Free, publicly-accessible full text available November 28, 2025
- 
            Abstract Reductions in streamflow caused by groundwater pumping, known as “streamflow depletion,” link the hydrologic process of stream‐aquifer interactions to human modifications of the water cycle. Isolating the impacts of groundwater pumping on streamflow is challenging because other climate and human activities concurrently impact streamflow, making it difficult to separate individual drivers of hydrologic change. In addition, there can be lags between when pumping occurs and when streamflow is affected. However, accurate quantification of streamflow depletion is critical to integrated groundwater and surface water management decision making. Here, we highlight research priorities to help advance fundamental hydrologic science and better serve the decision‐making process. Key priorities include (a) linking streamflow depletion to decision‐relevant outcomes such as ecosystem function and water users to align with partner needs; (b) enhancing partner trust and applicability of streamflow depletion methods through benchmarking and coupled model development; and (c) improving links between streamflow depletion quantification and decision‐making processes. Catalyzing research efforts around the common goal of enhancing our streamflow depletion decision‐support capabilities will require disciplinary advances within the water science community and a commitment to transdisciplinary collaboration with diverse water‐connected disciplines, professions, governments, organizations, and communities.more » « less
- 
            Effective groundwater management is critical to future environmental, ecological, and social sustainability and requires accurate estimates of groundwater withdrawals. Unfortunately, these estimates are not readily available in most areas due to physical, regulatory, and social challenges. Here, we compare four different approaches for estimating groundwater withdrawals for agricultural irrigation. We apply these methods in a groundwater‐irrigated region in the state of Kansas, USA, where high‐quality groundwater withdrawal data are available for evaluation. The four methods represent a broad spectrum of approaches: (1) the hydrologically‐based Water Table Fluctuation method (WTFM); (2) the demand‐based SALUS crop model; (3) estimates based on satellite‐derived evapotranspiration (ET) data from OpenET; and (4) a landscape hydrology model which integrates hydrologic‐ and demand‐based approaches. The applicability of each approach varies based on data availability, spatial and temporal resolution, and accuracy of predictions. In general, our results indicate that all approaches reasonably estimate groundwater withdrawals in our region, however, the type and amount of data required for accurate estimates and the computational requirements vary among approaches. For example, WTFM requires accurate groundwater levels, specific yield, and recharge data, whereas the SALUS crop model requires adequate information about crop type, land use, and weather. This variability highlights the difficulty in identifying what data, and how much, are necessary for a reasonable groundwater withdrawal estimate, and suggests that data availability should drive the choice of approach. Overall, our findings will help practitioners evaluate the strengths and weaknesses of different approaches and select the appropriate approach for their application.more » « less
- 
            Abstract The carbon dioxide (CO2) fluxes from headwater streams are not well quantified and could be a source of significant carbon, particularly in systems underlain by carbonate lithology. Also, the sensitivity of carbonate systems to changes in temperature will make these fluxes even more significant as climate changes. This study quantifies small-scale CO2 efflux and estimates annual CO2 emission from a headwater stream at the Konza Prairie Long-Term Ecological Research Site and Biological Station (Konza), in a complex terrain of horizontal, alternating limestones and shales with small-scale karst features. CO2 effluxes ranged from 2.2 to 214 g CO2 m−2 day−1 (mean: 20.9 CO2 m−2 day−1). Downstream of point groundwater discharge sources, CO2 efflux decreased, over 2 m, to 3–40% of the point-source flux, while δ13C-CO2 increased, ranging from −9.8 ‰ to −23.2 ‰ V-PDB. The δ13C-CO2 increase was not strictly proportional to the CO2 flux but related to the origin of vadose zone CO2. The high spatial and temporal variability of CO2 efflux from this headwater stream informs those doing similar measurements and those working on upscaling stream data, that local variability should be assessed to estimate the impact of headwater stream CO2 efflux on the global carbon cycle.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
